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Abstract We review two numerical methods related to the Schramm-Loewner evolution
(SLE). The first simulates SLE itself. More generally, it finds the curve in the half-plane
that results from the Loewner equation for a given driving function. The second method can
be thought of as the inverse problem. Given a simple curve in the half-plane it computes
the driving function in the Loewner equation. This algorithm can be used to test if a given
random family of curves in the half-plane is SLE by computing the driving process for the
curves and testing if it is Brownian motion. More generally, this algorithm can be used to
compute the driving process for random curves that may not be SLE. Most of the material
presented here has appeared before. Our goal is to give a pedagogic review, illustrate some
of the practical issues that arise in these computations and discuss some open problems.
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1 Introduction

This review is about two types of numerical calculations related to the Schramm-Loewner
evolution (SLE). The first is to simulate SLE itself. More generally, one can consider sim-
ulating the random curves you obtain in the plane when a random process is used for the
driving function in the Loewner equation. The second type of simulation is to take a family
of random curves in the plane and compute the random driving process that generates them
through the Loewner equation. This is related to SLE since one can test if a given family of
random curves is SLE by testing if the random driving process is Brownian motion. More
generally, it is of interest to study the random driving process for random curves that may
not be SLE. This review is meant to be pedagogic. Most of this material has appeared else-
where. Our goal is to provide the reader with a “how-to” guide that will enable him or her
to do state of the art simulations related to SLE.
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In the next section we give a heuristic and somewhat atypical introduction to SLE that
does not involve the Loewner equation. This is followed in Sect. 3 with a quick review of the
Loewner equation and the usual definition of SLE. The “discretization” of SLE that is used
in Sect. 2 and discussed in detail in Sect. 3 was studied extensively in [2] for a particular
approximation of the driving function (vertical slits). Reviews of SLE from the mathematics
point of view include [15, 23] and from the physics point of view include [3, 9, 11].

In Sect. 4 we consider the numerical algorithm for finding a curve for a given driving
function in the Loewner equation. Doing this with samples of Brownian motion for the
driving function gives a simulation of SLE.

In Sect. 5 we consider the numerical algorithm for finding the driving function for a given
curve. One motivation for doing this is that it gives a way to test if a given model is SLE
by testing if the driving process is Brownian motion. Several works have considered models
for which the connection with SLE is not clear, including domain walls in spin glasses [1, 7]
and turbulence [5, 6]. Another motivation is to study the driving process for massive scaling
limits of off-critical models [4, 8, 18].

Both of the numerical algorithms we study are closely related to the zipper algorithm
[14, 16]. This is an algorithm for numerically finding the conformal map of a given simply
connected domain onto a standard domain such as the unit disc. Much of the work described
in this review grew out of conversations with Don Marshall and Stephen Rohde.

2 An Introduction to SLE

In this section we will give a heuristic introduction to SLE. The standard definition of SLE
uses the Loewner equation from complex analysis. We will give a different definition of the
process that does not use the Loewner equation. This view of SLE is well known, but is
not typically discussed in reviews of SLE. The approach to SLE that we present is closely
related to the numerical algorithms we will discuss. In the next section we will see how this
approach is related to the usual definition using the Loewner equation.

Let H denote the upper half of the complex plane,

H = {z : Im(z) > 0} (1)

Fix an angle θ ∈ (0,π/2] and a length ρ > 0. Let f+(z) be the conformal map which takes
H onto H \ {reiθ : 0 < r ≤ ρ}, the upper half plane minus the line segment from 0 to ρeiθ .
This map is not unique. We make the choice unique by requiring

f+(∞) = ∞
f ′

+(∞) = 1

f+(0) = ρeiθ (2)

The first two conditions mean that the Laurent series of f+ about ∞ is of the form

f+(z) = z + c0 + c1

z
+ c2

z2
+ · · ·

(For the reader familiar with the Loewner equation, we note that this is not the “hydrody-
namic” normalization which would require that c0 = 0 in the Laurent expansion instead of
the third condition in (2).) The map f+ is illustrated by the upper left picture in Fig. 1.



Numerical Computations for the Schramm-Loewner Evolution 841

Fig. 1 (Color online) The figures illustrate the random composition of a sequence from the maps f− and
f+ . The numbers of maps in the compositions are 1,2,5 and 10

The grid shown is the image under the conformal map of the uniform rectangular grid in
the upper half plane. Let f−(z) be the analogous conformal map for the segment from 0
to ρei(π−θ). (So the range of f− is the reflection of the range of f+ about the vertical axis.)

Consider composing two of these maps, e.g., f+ ◦ f−. The effect of the second map in
the composition will be to push the line segment created by the first map into the upper half
plane and bend it somewhat. Because we have required that these maps send 0 to the tip of
the line segment, the lower endpoint of the image of the first slit under the second map will
be the tip of the second slit. In other words the image of H under the composition will be
H with a curve removed. The map f+ ◦ f− is illustrated by the picture in the upper right
of Fig. 1.

We can compose multiple copies of f− and f+ and the resulting conformal map will
send the half plane onto the half plane minus a curve. We choose the maps randomly. Let
Xn be a sequence of independent, identically distributed random variables with Xn = ±1
with probability 1/2. For positive integers n consider the conformal map

Fn = fX1 ◦ fX2 ◦ fX3 ◦ · · · ◦ fXn (3)

(There is a slight abuse of notation here: f±1 means f±.) The picture in the lower left of
Fig. 1 illustrates an example of F5, and the picture in the lower right an example of F10.

The conformal map Fn will map H onto H\ γ̂n where γ̂n is a curve in the upper half plane
starting at 0. Because of the order of the X′

is in (3), the curve γ̂n+1 will be an extension of
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the curve γ̂n. So we can let n → ∞ to get an infinite curve γ̂ . After we have let n → ∞,
we take the scaling limit ρ → 0. (This is a distributional limit.) We expect that the resulting
probability measure on infinite curves is SLE. To see why we expect this one must consider
the Loewner equation description of the curve γ̂ . We will do this in detail in the next section.
Here we simply remark that we will see that the driving function of γ̂ is essentially a random
walk which converges to Brownian motion in distribution as ρ → 0. Roughly speaking, the
variance of the Brownian motion is determined by the step sizes of the random walk which
in turn are determined by the angle θ . Using results that will appear latter, in particular (13)
and (14), one can show that the usual parameter κ for SLE is given in terms of θ by

κ = 4(1 − 2α)2

α(1 − α)
, α = θ/π

When we use a piecewise smooth approximation to the driving function in the Loewner
equation, the curve γ̂ will be simple (non-intersecting). It is a subtle question whether
the curves one obtains in the limit ρ → 0 are simple. For κ ≤ 4, SLE produces a simple
curve [20], and it is natural to conjecture that γ̂ converges to this SLE curve. We do not
prove this, and we are not aware of any proof in the literature. For κ > 4 the random set pro-
duced by SLE is not even a curve [20]. It is generated by a non-simple curve, called the SLE
trace, in the sense that the SLE set at time t is the complement of the unbounded connected
component of the half plane minus the curve up to time t . It is natural to conjecture that γ̂

converges in distribution to the SLE trace, but again we do not prove this and are not aware
of any proof in the literature. Closely related questions are considered in [2].

3 The Loewner Equation

We will now quickly review the Loewner equation from complex analysis and see how it is
related to the definition of SLE that we gave in the previous section. The Loewner equation
provides a means for encoding curves in the upper half plane that do not intersect themselves
by a real-valued function. In fact, it applies to more general growth processes in the half
plane, but for the moment we restrict our attention to curves. Let γ (t) be a simple curve
which lies in H for 0 < t < ∞ and starts at the origin, i.e., γ (0) = 0. Let γ [0, t] denote
the image of γ up to time t . Then H \ γ [0, t] is a simply connected domain. So there is a
conformal map gt from this domain to H. This map is not unique. We choose the map that
satisfies

gt (z) = z + C(t)

z
+ O

(
1

|z|2
)

, z → ∞ (4)

The coefficient C(t) is called the half-plane capacity of γ [0, t]. It is known to be increas-
ing in t , so we can parametrize the curve so that C(t) = 2t . Then gt satisfies Loewner’s
differential equation

∂gt (z)

∂t
= 2

gt (z) − Ut

, g0(z) = z (5)

for some real valued function Ut on [0,∞). This statement is not obvious, and we refer the
reader to [15] for a proof. The function Ut is often called the driving function. We emphasize
that while gt (z) is complex valued, the driving function Ut is real-valued.

Note that gt goes in the opposite direction of the maps in the previous section, i.e., it
sends the half plane with a curve deleted onto the half plane while the previous maps sent
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the half plane onto the half plane minus a curve. We should also note that gt is normalized
differently since the constant term in (4) vanishes. So gt (γ (t)) is not the origin. In fact it
is Ut . (To be precise, gt (γ (t)) is not defined since γ (t) is on the boundary of the domain
of gt . Its image under gt must be defined by a limiting process.)

If our simple curve in the half plane is random, then the driving function Ut is a sto-
chastic process. Schramm’s wonderful discovery was that if the scaling limit of a two-
dimensional model is conformally invariant and satisfies a property usually called the do-
main Markov property, then this stochastic driving process must be a Brownian motion with
mean zero [21]. The only thing that is not determined is the variance. Schramm named
this process stochastic Loewner evolution or SLE; it is now often referred to as Schramm-
Loewner evolution.

The solution to (5) need not exist for all times t since the denominator can go to zero. We
let Kt be the set of points z in H for which the solution to this equation no longer exists at
time t . If we start with a simple curve and define gt as we did above, then Kt will be γ [0, t].
But if we start with a continuous driving function Ut and solve the Loewner equation, Kt

will only be a curve for sufficiently nice Ut . (Just what sufficiently nice means is a subtle
question [17].) For other Ut , Kt can be a more complicated growing set. In particular, when
Ut is a Brownian motion, Kt may not be a curve. In our simulations, even in the cases where
Ut is not sufficiently nice, our approximation to Ut will be nice enough that it produces a
curve. So in the following we will always take Kt to be a curve, but the reader should keep
in mind that in some cases this curve is approximating a more complicated set.

Let t, s > 0. The map gt+s maps H \ γ [0, t + s] onto H. We can do this in two steps.
We first apply the map gs . This maps H \ γ [0, s] onto H, and it maps H \ γ [0, t + s] onto
H \ gs(γ [s, t + s]). Let ḡt be the conformal map that maps H \ gs(γ [s, t + s]) onto H with
the usual hydrodynamic normalization. Then ḡt ◦ gs will map H \ γ [0, t + s] onto H and
satisfy (4). There is only one such conformal map, so

gs+t = ḡt ◦ gs, i.e., ḡt = gs+t ◦ g−1
s (6)

It we think of s as being fixed and t as the time variable, then the function ḡt is also a
solution of the Loewner equation

d

dt
ḡt (z) = d

dt
gs+t ◦ g−1

s (z) = 2

gs+t ◦ g−1
s (z) − Us+t

= 2

ḡt (z) − Us+t

(7)

and satisfies ḡ0(z) = z. Thus ḡt (z) is obtained by solving the Loewner equation with driving
function Ūt = Us+t . This driving function starts at Us , and so the curve associated with ḡt

starts at Us .
We now introduce a partition of the time interval [0,∞): 0 = t0 < t1 < t2 < · · ·

< tn < · · · , and define

ḡk = gtk ◦ g−1
tk−1

(8)

So

gtk = ḡk ◦ ḡk−1 ◦ ḡk−2 ◦ · · · ◦ ḡ2 ◦ ḡ1 (9)

By the remarks above, ḡk is obtained by solving the Loewner equation with driving function
Utk−1+t for t = 0 to t = 	k , where 	k = tk − tk−1. The image of H under ḡk is H minus a
“cut” starting at Utk−1 . So if we shift it by defining

gk(z) = ḡk(z + Utk−1) − Utk−1 , (10)
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then gk is obtained by solving the Loewner equation with driving function Utk−1+t − Utk−1

for t = 0 to t = 	k . This driving function starts at 0 and ends at δk where δk = Utk − Utk−1 .
So this conformal map takes H minus a cut starting at the origin onto H. The inverse of this
map,

g−1
k (z) = ḡ−1

k (z + Utk−1) − Utk−1 (11)

takes H and introduces a cut which begins at the origin.
There are two general types of simulations we would like to do. Given a driving function

we want to find the curve it generates. And given a curve we want to find the corresponding
driving function. For both problems the key idea is the same. We approximate the driving
function on the interval [tk−1, tk] by a function for which the Loewner equation may be
explicitly solved. So the maps ḡk and gk can be found explicitly. Equation (9) can then be
used to approximate gt . We will consider two explicit solutions of the Loewner equation
which we will refer to as “tilted slits” and “vertical slits.”

For tilted slits, let xl, xr > 0 and 0 < α < 1. Then define

f (z) = (z + xl)
1−α(z − xr)

α

Then f maps H to H \ � where � is a line segment from 0 to a point ρeiαπ . The length ρ

can be expressed in terms of xl, xr and α. This map sends [−xl, xr ] onto �. Unfortunately,
its inverse cannot be explicitly computed. For the inverse to satisfy the normalization (4),
we must have

(1 − α)xl = αxr (12)

Straightforward calculation shows if we let

ft (z) =
(

z + 2
√

t

√
α

1 − α

)1−α(
z − 2

√
t

√
1 − α

α

)α

then it produces a slit with capacity 2t . We know that gt = f −1
t must satisfy the Loewner

equation (5) for some driving function Ut . More calculation shows that the driving function
is

Ut = cα

√
t, cα = 2

1 − 2α√
α(1 − α)

(13)

The change in the driving function over the time interval [0,	] is

δ = cα

√
	 (14)

Note that c1−α = −cα as one would expect. The original map f had three real degrees of
freedom, α,xl, xr . The condition (12) reduces this to two real degrees of freedom, α and t .
So if we are given δ and 	 or given ρ and α, then the map is completely determined.

Vertical slits correspond to an even simpler solution of the Loewner equation. Let

gt (z) =
√

(z − δ)2 + 4t + δ

Then it is easy to check that gt satisfies Loewner’s equation with a constant driving function,
Ut = δ. Since the driving function does not start at 0, the curve will not start at the origin. The
curve is just a vertical slit from δ to δ+2i

√
t . Using vertical slits means that we approximate
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the driving function by a discontinuous piecewise constant function. This will produce a Kt

which is not a curve.
Our numerical studies only use tilted slits and vertical slits for the explicit solutions

for the Loewner equation. Another possibility is to use a linear driving function. If we let
ht = gt − Ut , then the differential equation for ht can be solved by separation of variables.
The solution is not completely explicit—it must be expressed in terms of a function that is
defined implicitly by a transcendental equation.

4 From the Driving Function to the Curve

Our primary motivation is to simulate SLE, i.e., to compute the curve when the driving func-
tion is Brownian motion. But our discussion is more general, and the following algorithm
can be used to calculate the curve corresponding to any driving function Ut .

There are a variety of conformal maps that occur in this paper, and we have denoted them
by letters that indicate what they do. Maps denoted with g are solutions of the Loewner
equation with a driving function that starts at 0. So they map the half plane minus a curve
starting at the origin onto the half plane, sending the tip of the curve to the final value of the
driving function. We use ḡ for solutions to the Loewner equation when the driving function
does not start at 0. In this case the curve starts at the initial value of the driving function and
the map still sends the tip to the final value of the driving function. If we follow a map g

by a real translation that takes the final value of the driving function to 0, we get a map that
takes the half plane minus a curve onto the half plane and sends the tip to the origin. We
denote such maps by h. (Note that such maps do not satisfy the Loewner equation.) Finally,
we use f to denote maps that are inverses of maps h. So they take the half plane onto the
half plane minus a curve and sends the origin to the tip.

Let 0 = t0 < t1 < t2 < · · · < tn be a partition of the time interval [0, t]. The SLE curve
is given by γ (t) = g−1

t (Ut ). Let zk = g−1
tk

(Utk ). We will only consider the points zk on this
curve which correspond to times t = tk . One could consider other points on the curve, but
the distance between consecutive zk is already of the order of the error in our approximation,
so there is no reason to consider more points. By (9) the points zk are given by

zk = ḡ−1
1 ◦ ḡ−1

2 ◦ · · · ◦ ḡ−1
k−1 ◦ ḡ−1

k (Utk ) (15)

Recall that if we solve the Loewner equation with driving function Utk−1+t − Utk−1 for t = 0
to t = 	k , the result is gk(z) where

gk(z) = ḡk(z + Utk−1) − Utk−1 (16)

Define

hk(z) = gk(z) − δk = ḡ(z + Utk−1) − Utk (17)

where δk = Utk − Utk−1 . Then

hk ◦ hk−1 ◦ · · · ◦ h1(zk) = ḡk ◦ ḡk−1 ◦ · · · ◦ ḡ1(zk) − Utk = 0. (18)

Let

fk = h−1
k (19)
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So

zk = f1 ◦ f2 ◦ · · · ◦ fk(0) (20)

As noted before, gk maps H minus a small curve onto H. The driving function ends at δk ,
so gk sends the tip of the curve to δk . It follows that hk(z) = gk(z) − δk maps H minus the
small curve onto H and sends the tip to the origin. So fk = h−1

k maps H onto H minus the
small curve and sends the origin to the tip of the curve. Thus the functions fk are analogous
to the functions f± from Sect. 2 in that they all introduce a small cut into the upper plane
and send the origin to the tip of the cut. Note the similarity of (20) to (3).

As discussed before, we define Ut on each time interval tk−1 ≤ t ≤ tk so that gk(z) may be
explicitly computed. There are two constraints on gk . The curve must have capacity 2	k and
gk must map the tip of the curve to δk . Any simple curve satisfying these two constraints and
starting at the origin will correspond to a solution of the Loewner equation for some driving
function which goes from 0 to δk over the time interval [0,	k]. So our approximation can
be thought of as replacing the driving function by a new driving function that agrees with
the original one at the times tk but differs in between those times.

Different choices of how we define Ut on each time interval give us different discretiza-
tions. As we will see, this choice will not have a significant effect. Of much greater impor-
tance is how we choose the 	k and δk .

If we want to simulate SLE, the δk should be chosen so that the stochastic process Ut

will converge to
√

κ times Brownian motion as N → ∞. One choice is take the δk to be
independent normal random variables with mean zero and variance κ	k . If we do this, then
Ut and

√
κBt will have the same distributions if we only consider the times tk . Another

possibility is to approximate the Brownian motion by a simple random walk. This is done
by using a uniform partition of the time interval and taking the δk to be independent random
variables with δk = ±√

κ	k where the choices of + and − both have probability 1/2. This
is what we were doing in Sect. 2. With the tilted slit maps, (14) implies κ = c2

α , and this
is (4).

The simplest choice for 	k is to use a uniform partition of the time interval. For values
of κ which are not too large this works reasonably well. Figure 2 shows a simulation using
κ = 8/3 with 10,000 equally spaced time intervals. However, for larger values of κ , uniform
	k are a disaster. Figure 3 shows a simulation with κ = 6 and 10,000 equally spaced time
intervals. Clearly something has gone wrong. To see just how badly wrong things have gone
the reader should compare this figure with Fig. 4 which uses the same sample of Brownian
motion.

To understand the effect seen in Fig. 3 we give an equivalent definition of the half plane
capacity C of a set A. We originally defined it by

g(z) = z + C

z
+ O

(
1

z2

)

where g maps H \ A onto H. A more intuitive definition is

C = lim
y→∞y Eiy[Im(Bτ )]

where Bt is two-dimensional Brownian motion started at iy. The stopping time τ is the
first time the Brownian motion hits A or R. From the point of view of this two-dimensional
Brownian motion, parts of the curve can be well hidden by earlier parts of the curve and
so have very little capacity. So what looks like a “long” section of the curve has very little
capacity and so gets very few points approximating it.
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Fig. 2 (Color online) SLE with
κ = 8/3 with fixed 	t . There are
10,000 points

Fig. 3 (Color online) SLE with
κ = 6 with fixed 	t . There are
10,000 points

To do better we will use non-uniform 	k . In fact they will depend on the sample of
the Brownian motion and so we refer to this method as “adaptive 	k .” (I learned this idea
from Stephen Rohde [19].) Fix a spatial scale ε > 0. We start with a uniform partition of
the time and compute the points zk along the curve. Then we look for points zk such that
|zk − zk−1| ≥ ε. For these time intervals [tk−1, tk], divide the interval into two equal intervals.
We then sample the Brownian motion at the midpoint of [tk−1, tk] using a Brownian bridge.
(This just means that to choose the value of the driving function at the midpoint of [tk−1, tk]
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Fig. 4 (Color online) SLE with
κ = 6 with adaptive 	t . There
are 35,000 points

we use a Brownian motion conditioned on the values we already have for it at tk−1 and tk .)
Then we recompute all the zk . (There will of course be more of them than before.) Note
that we must recompute all the points since even at times which appeared in the time parti-
tion before, the corresponding point on the curve will change. We repeat this until we have
|zk − zk−1| ≤ ε for all k.

Our approximation can be thought of as approximating the driving function by a con-
catenation of driving functions on short time intervals for which the Loewner equation is
exactly solvable. It is important to consider the effect of the choice of which exactly solv-
able driving functions we use. To do this we compare the curves we get using tilted slits for
the elementary maps with the curves we get using vertical slits. We carry out the adaptive
simulation just described using tilted slits. We then use the same 	k and δk , i.e., the same
partition of the time interval and the same sample of Brownian motion, but with vertical
slits. For κ = 8/3, Fig. 5 shows the tilted slits curve vs. the vertical slits curve. The vertical
slits do not produce a curve. What we have plotted is the following. We compute the points
zk and then just connect them with a straight line. In Fig. 5 it is almost impossible to dis-
tinguish the two curves. An enlargement of part of the curves is shown in the inset. Even
in the enlargement the difference is quite small. The curves have a relatively small number
of points (about 6,000), and in the enlargement we have plotted the points for the tilted slit
curve. The difference between the two curves is on the order of the distance between these
points.

Figure 6 shows the same thing with κ = 6. In the enlargement one can see deviations
between the two curves, but the size of the deviations is again on the same scale as the
distance between adjacent points on the curve.

It is interesting to note that there is what one might call a stability to the approximation
we are using. The difference between the two curves in Figs. 5 and 6 fluctuates with time,
but it does not grow with time. In other words, the errors from approximating the true driving
function over the short time intervals do not appear to accumulate.
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Fig. 5 (Color online) A comparison of the curves obtained using tilted slit maps and vertical slit maps with
κ = 8/3

Fig. 6 (Color online) A comparison of the curves obtained using tilted slit maps and vertical slit maps with
κ = 6

5 From the Curve to the Driving Function

We now consider what one might call the inverse problem. Given a simple curve γ , we want
to compute the corresponding driving function.
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Let γ (s) be a parametrized simple curve in H. In almost all applications, the parame-
trization of the curve is not the parametrization by capacity. Let gs be the conformal map
which takes H \ γ [0, s] onto H, normalized so that for large z

gs(z) = z + C(s)

z
+ O

(
1

z2

)
(21)

The coefficient C(s) is the half-plane capacity of γ [0, s]. The value of the driving function
at t = C(s)/2 is Ut = gs(γ (s)). Thus computing the driving function essentially reduces to
computing this uniformizing conformal map.

Let z0, z1, . . . , zn be points along the curve γ with z0 = 0. In many applications these
are lattice sites. We will find a sequence of conformal maps hi , i = 1,2, . . . , n such that
hk ◦ hk−1 ◦ · · · ◦ h1(zk) = 0. Then hk ◦ hk−1 ◦ · · · ◦ h1 sends H \ γ̂ to H where γ̂ is some
curve that passes through z0, z1, . . . , zk and so approximates γ . Suppose that the conformal
maps h1, h2, . . . , hk have been defined with these properties. Let

wk+1 = hk ◦ hk−1 ◦ · · · ◦ h1(zk+1) (22)

Then wk+1 is close to the origin. We define hk+1 to be a conformal map that sends H\γk+1 to
H where γk+1 is a short simple curve from 0 to wk+1. We also require that hk+1 sends wk+1

to the origin. As before we choose the curve γk+1 so that hk+1 is explicitly known; possible
choices include “tilted slits” and “vertical slits.” Note that for both of these maps there were
two real degrees of freedom. They will be determined by the condition that hk+1(wk+1) = 0.

Let 2	i be the capacity of the map hi , and δi the final value of the driving function for hi .
So

hi(z) = z − δi + 2	i

z
+ O

(
1

z2

)
(23)

Then

hk ◦ hk−1 ◦ · · · ◦ h1(z) = z − Ut + 2t

z
+ O

(
1

z2

)
(24)

where

t =
k∑

i=1

	i (25)

Ut =
k∑

i=1

δi (26)

Thus the driving function of the curve is obtained by concatenating the driving functions of
the elementary conformal maps hi .

6 Faster Algorithms

In this section we show how to speed up both the algorithm for computing the curve γ given
the driving function Ut and the algorithm for computing the driving function Ut given a
curve γ . We start with the first algorithm. One of the main motivations is a fast algorithm
for simulating SLE, but our fast algorithm is applicable to other driving functions as well.
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Recall that points on the approximation to the SLE trace or more generally the curve γ

are given by (20) which says

zk = f1 ◦ f2 ◦ · · · ◦ fk(0) (27)

The number of operations needed to compute a single zk is proportional to k. So to compute
all the points zk with k = 1,2, . . . ,N requires a time O(N2). The computation of zk does not
depend on any of the other zj . Depending on what we want to compute, we may only need to
compute a subset of the points zk . (For example, if we are only interested in zN = γ (tN ), the
time required is O(N) not O(N2).) For a typical point zk , the time to compute it is O(N)

for the above algorithm. Our goal is to develop an algorithm for which this time is O(Np)

with p < 1.
Our algorithm groups the functions in (27) into blocks. We denote the number of func-

tions in a block by b. Let

Fj = f(j−1)b+1 ◦ f(j−1)b+2 ◦ · · · ◦ fjb (28)

If we write k as k = mb + l with 0 ≤ l < b, then we have

zk = F1 ◦ F2 ◦ · · · ◦ Fm ◦ fmb+1 ◦ fmb+2 ◦ · · · ◦ fmb+l (0) (29)

The number of compositions in (29) is smaller than the number in (27) by roughly a factor
of b if b is smaller than m, i.e., if k is bigger than b2.

Unfortunately, even though the fi are explicit and relatively simple, the Fj cannot be
explicitly computed. Our strategy is to approximate the fi by functions whose compositions
can be explicitly computed to give an explicit approximation to Fj . For large z, fi(z) is
given by its Laurent series about ∞. One could approximate fi by truncating this Laurent
series. Our approximation is of this nature, but slightly different.

Let γ : [0, t] → H be a simple curve in the upper half plane with γ (0) = 0. Let f (z) be
the conformal map from H onto H\γ [0, t]. We assume that f is normalized is the same way
as our fi , i.e., f (∞) = ∞, f ′(∞) = 1 and f (0) = γ (t). Let a, b > 0 be such that [−a, b]
is mapped onto the slit γ [0, t]. Then f is real valued on (−∞,−a] ∪ [b,∞), and so f has
an analytic continuation to C \ [−a, b] by the Schwartz reflection principle. We denote this
extension by just f .

Let R = max{a, b}, so f is analytic on {z : |z| > R} and maps ∞ to itself. Thus f (1/z)

is analytic on {z : 0 < |z| < 1/R}. Since our assumptions on f imply it has a simple pole at
the origin with residue 1, we have

f (1/z) = 1/z +
∞∑

k=0

ckz
k (30)

This gives the Laurent series of f about ∞.

f (z) = z +
∞∑

k=0

ckz
−k (31)

This Laurent series is a natural approximation to use for f when z is large. However, we
will use a different but closely related representation.
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Define f̂ (z) = 1/f (1/z). Since f (z) does not vanish on {|z| > R}, f̂ (z) is analytic in
{z : |z| < 1/R}. Our assumptions on f imply that f̂ (0) = 0 and f̂ ′(0) = 1. So f̂ has a power
series

f̂ (z) = z +
∞∑

j=2

ajz
j (32)

The radius of convergence of this power series is easily shown to be 1/R. Note that the
coefficients of the power series of f̂ are the coefficients of the Laurent series of 1/f .

The primary advantage of our power series over the Laurent series is its behavior with
respect to composition.

(f1 ◦ f2)ˆ(z) = 1

f1((f2(1/z))
= 1

f1(1/f̂2(z))
= f̂1(f̂2(z)) (33)

Thus

(f1 ◦ f2)ˆ = f̂1 ◦ f̂2 (34)

Our approximation for f (z) is to approximate f̂ (z) by the truncation of its power series at
order n. So

f (z) = 1

f̂ (1/z)
≈

[
n∑

j=0

aj z
−j

]−1

(35)

For each fi we compute the power series of f̂i to order n. Using these and (34), we
compute the power series of F̂j to order n. Let 1/Rj be the radius of convergence for the
power series of F̂j . Now consider evaluating the composition in (29). Let z be the argument
to Fj . If z is large compared to Rj , then Fj (z) is well approximated using the power series
of F̂j . We introduce a parameter L > 1 and use the power series of F̂j to compute Fj (z)

whenever |z| ≥ LRj . When |z| < LRj , we just use (28) to compute Fj (z). The argument
of Fj is random, and so whether or not we can approximate a particular Fj using these
power series is random. As part of the algorithm we must compute Rj . This is easy. Rj is
the smallest positive number such that Fj (Rj ) and Fj (−Rj) are both real.

In addition to the choice of simple curves we use (tilted slits, vertical slits, . . .), there are
three parameters in our algorithm. b is the number of functions composed in a block. n is the
order at which we truncate our series approximation. L is the scale that determines when we
use series for Fj . The parameter b has little effect on the accuracy of the algorithm and we
should choose it to make the algorithm run as quickly as possible. Equation (29) suggests
that b should vary with N as

√
N and experiments bear this out.

The choice of n involves a tradeoff of speed vs. accuracy. Larger n means more terms in
the series, hence slower but more accurate computations. We typically use n = 12.

The parameter L will determine how fast the series converges. Roughly speaking, the
series will converges at least as fast as the geometric series

∑
n L−n . The choice of L also

involves a tradeoff of speed vs. accuracy. Larger L means the series converges faster and so
is more accurate. But it also means that we use the block functions Fj less frequently, and
so the computation is slower. We typically use L = 4.

A detailed study of the effects of the choices of b,n and L can be found in [12]. This
paper also studies the time to compute a point on the curve and finds it is O(Np) with p

approximately 0.4. To illustrate the accuracy of our series approximation we compute an
SLE curve for κ = 6 with and without the series approximation. We use the same Brownian
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Fig. 7 (Color online) Two curves for SLE with κ = 6 are shown. They use the same Brownian motion sample
path but one uses the series approximation and the other does not

motion sample path for both curves. We typically take n = 12 and L = 4. With these choices
the difference between the curves obtained with and without the series approximation is
extremely small and cannot be seen in plots of the curves. If we reduce n to only 6 we can
begin to see the effect of the series approximation. Figure 7 shows the two curves we get
for κ = 6 and the same sample of the driving process when we use n = 6. One can only
distinguish the difference in the enlargement and even then it is small.

We now consider the algorithm for computing the driving function of a given curve. The
number of operations needed to compute a single wk+1 is proportional to k. So to compute all
the points wk+1, and hence the approximation to the driving function, requires a time O(N2).
The idea for improving this is the same as before—we group the functions we are composing
into blocks and approximate the composition F of the functions in a block using the power
series of F̂ . The only minor difference is that the order of the conformal maps in (22) is the
opposite of that in (20). We continue to denote the number of functions in a block by b. Let

Hj = hjb ◦ hjb−1 ◦ · · · ◦ h(j−1)b+2 ◦ h(j−1)b+1 (36)

If we write k as k = mb + r with 0 ≤ r < b, then (22) becomes

wk+1 = hmb+r ◦ hmb+r−1 ◦ · · · ◦ hmb+1 ◦ Hm ◦ Hm−1 ◦ · · · ◦ H1(zk+1) (37)

As before, the hi are relatively simple, but the composition Hj cannot be explicitly com-
puted. We approximate hi by the power series of ĥi and compute the approximations to the
compositions in (36) just once rather than every time we compute a wk .

Recall that hi is normalized so that hi(∞) = ∞ and h′
i (∞) = 1. It maps H minus a

simple curve near the origin to H, sending the tip of the curve to the origin. Let h denote
such a conformal map. Let R be the largest distance from the origin to a point on the curve.
Then h is analytic on {z ∈ H : |z| > R}. Since h is real valued on the real axis, the Schwarz
reflection principle says it may be analytically continued to {z ∈ C : |z| > R}. Moreover, it
does not vanish on this domain. We could approximate h by its Laurent series about ∞, but
as with the first algorithm it is better to use the power series of ĥ(z) = 1/h(1/z). Note that
the radius of convergence of this power series is 1/R.
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As before, the advantage of working with the power series of ĥ is its behavior with respect
to composition: (h1 ◦ h2)ˆ = ĥ1 ◦ ĥ2. Our approximation for hi(z) is to replace ĥi (z) by the
truncation of its power series at order n as we did in (35). The approximation of hi and of Hj

proceeds as for the first algorithm. For each hi we compute the power series of ĥi to order n.
We then use them to compute the power series of Ĥj to order n. As before we introduce a
parameter L > 0. Let 1/Rj be the radius of convergence for the power series of Ĥj . Now
consider (37). If the argument z of Hj satisfies |z| ≥ LRj , then we approximate Hj(z) using
the power series of Ĥj . Otherwise we just use (36) to compute Hj(z). The argument of Hj

is random, so as before whether or not we can approximate a particular Hj by its series is
random.

We need to compute Rj . Consider the images of z(j−1)b, z(j−1)b+1, . . . , zjb−1 under the
map Hj−1 ◦ Hj−2 ◦ · · · ◦ H1. The domain of the conformal map Hj is the half-plane H

minus some curve �j which passes through the images of these points. The radius Rj is
the maximal distance from the origin to a point on �j . This distance should be very close
to the maximum distance from the origin to images of z(j−1)b, z(j−1)b+1, . . . , zjb−1 under
Hj−1 ◦ Hj−2 ◦ · · · ◦ H1. So in our algorithm we approximate Rj by the maximum of these
distances.

To compute the driving function without using the power series we must compute all the
points wk . So if we do not use the power series, the time needed is O(N2). The improvement
in the speed of the algorithm from using the power series approximation is studied in [13].
Numerical experiments indicate it is O(Np) with p approximately equal to 1.35.

7 Conclusions and Open Problems

We have reviewed numerical methods for taking a driving function and finding the curve
produced by the Loewner equation and for taking a curve in the half plane and finding the
corresponding driving function. Both methods are based on approximating the driving func-
tion over short time intervals by a function for which the Loewner equation may be solved
explicitly. The solution of the Loewner equation over the entire interval is then given by a
composition of such maps. Our numerical studies used as the simple maps the conformal
maps that produce a vertical slit or a tilted slit in the half plane. The difference in the results
when we use vertical slits or tilted slits is small. The vertical slit map is considerably faster
and simpler to implement, so we see no reason to use the tilted slit map. To simulate SLE
effectively it is imperative that the choice of time intervals be done in a way that depends
on the sample of the driving function so that sections of the curve that correspond to small
changes in capacity are computed accurately.

The speed of both algorithm can be greatly increased by using power series approxima-
tions of certain analytic functions. This approximation is quite accurate and the errors from
it are insignificant compared to the effect of changing the number of points used on the curve
or compared to the difference between using vertical slits or tilted slits in the algorithm.

We end with a discussion of a variety of open problems related to these two algorithms.
We have only discussed the simulation of chordal SLE. In chordal SLE the random curve

goes between two boundary points, e.g., the origin and infinity in the half plane. In radial
SLE the random curve goes between a boundary point and an interior point, e.g., the point
1 and the origin in the unit disc. The simulation of radial SLE is similar. Can one use the
ideas we used to speed up the simulation of chordal SLE to speed up the simulation of radial
SLE?
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Instead of taking the scaling limit at the critical point, one can consider off critical models
and take the scaling limit in such a way that it has a finite correlation length. What can you
say about the driving process for this scaling limit? For percolation it is know to be rather
nasty [18]. See also [4, 8].

There are several methods for numerically computing the conformal map of a given
simply connected domain onto a standard domain, like the unit disc. One of these methods,
the zipper algorithm [14, 16], reduces the problem to that of finding the conformal map from
the half plane minus a curve to the half plane. So the power series approximation that we
use also provides a faster version of this algorithm. How does this faster version compare to
other methods for finding the conformal map from a simply connected domain to a standard
domain [10, 22]?

As discussed in Sect. 2, it is natural to conjecture that the discrete SLE curve γ̂ introduced
in that section converges to the SLE curve for κ ≤ 4 and converges to the SLE trace which
generates the SLE hull for κ > 4. Prove this. Part of the problem is figure out the sense
in which they converge. Clearly the driving functions converge in distribution to Brownian
motion, but what does this imply about the curves?

For the inverse problem of finding the driving function for a given curve, there is an
analogous convergence question. Show that as the number of points used to approximate
the curve goes to infinity, the computed driving function converges to the true driving func-
tion. Marshall and Rohde have proved convergence for a particular variant of the zipper
algorithm [16].

As discussed in Sect. 4, there is a certain stability to our approximation of the curve
generated by a given driving function. Explain this stability.
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